Enertion: Update 1

I have made a bunch of progress on the project this week. In my research of wearables that you can measure your brain activity, I decided that going with something like the NeuroSky Headset. I have ordered one and will be using it to measure brain activity before, during and after meditation sessions. I have decided against the thermodynamic camera for two reasons, one the price, and two the lack of solid verifiable scientific evidence that it actually works and measures the ‘aura’ around an individual.

I’m developing a method of analysis now to see how I can best measure and discuss energy.

 

Conversations

I had a chat with Alex Morrison, who is a research scientist whose research interests include the interaction of cognition with stress and aging and the ability to enhance or protect cognition though mindfulness training and computerized working memory training. She is available to help think through the cognition-related elements of this final.

 

Meditation Pod

I have built the entire meditation pod in which I’m going to conduct these experiments. You can find the BOM here. Here are some pictures:

 

 

 

Enertation: The Energy Behind Meditation

My project will dive into the actual energy created during mediation and how that impacts the individual and the world around them.
When you think of energy, it usually condors up images of electricity racing theough wires lighting up curcuits, an athelete performing rigorous exersices, or your favorite artist rocking at a concert. Meditation is not usually what comes to mind, and beyond that the measurement of these “electrical fields” unfortunately puts meditation into the box of pseudoscience that people label as “hokey” and “woo-woo”. But what if there was a way to accurately study the energy levels created by an individual during meditation? How does it change their minds and bodies? How doss it affect the people and things around them?
Thermographic cameras, a camera that forms an image using infrared radiation, similar to a common camera that forms an image using visible light. Instead of the 400–700 nanometre range of the visible light camera, infrared cameras operate in wavelengths as long as 14,000 nm (14 µm). Their use is called thermography. These devices have been used to visualize a person’s aura. 
One of these cameras, utilizes a Gas Discharge Visualization Technique (GDV) , which is a computer registration and analysis of gas discharge glow (GDV-images) of any biological objects placed in a high intensity electromagnetic field.
The GDV method is based on the stimulation of photon and electron emissions from the surface of the object whilst transmitting short electrical pulses. In other words, when the object is placed in an electromagnetic field, it is primarily electrons, and to a certain degree photons, which are ‘extracted’ from the surface of the object. This process is called ‘photo-electron emissions’ and it has been quite well studied with physical electronic methods. The emitted particles accelerate in the electromagnetic field, generating electronic avalanches on the surface of the dielectric (glass). This process is called ‘sliding gas discharge’. The discharge causes glow due to the excitement of molecules in the surrounding gas, and this glow is what is being measured by the GDV method. Therefore, voltage pulses stimulate optoelectronic emission whilst intensifying this emission in the gas discharge, owing to the electric field created.
Many of these modalities challenge the dominant biomedical paradigm because they cannot be explained by the usual biochemical mechanisms. One possible influence of biofield phenomena is that they may act directly on molecular structures, changing the conformation of molecules in functionally significant ways. Another influence is that they may transfer bioinformation carried by very small energy signals interacting directly with the energy fields of life, which is more recently known as the biofield (Rubik et al, 1994).
Moreover, other mysteries in biology and medicine exist that appear to involve interacting energetic fields, including the mystery of regenerative healing in animals, sometimes associated with innate electromagnetic energy fields that have been measured (Becker, 1960, 1961) and sometimes actually stimulated with external low-level energy fields (Becker, 1972; Smith, 1967). Another mystery is that living organisms respond to extremely low-level nonionizing electromagnetic fields, displaying a variety of effects ranging from cellular and subcellular scales to the level of brain, emotions, and behavior. These fields may be beneficial (therapeutic), deleterious (electromagnetic pollution), or neutral. Then, the mystery of embryonic development from the fertilized egg to an organized integral animal should be considered, which may also involve innate energy fields, starting with the initial polarization of the fertilized egg.

– Lyn Freeman 
http://www.faim.org/measurement-of-the-human-biofield-and-other-energetic-instruments



 – working BOM

Solar-Powered Self Watering Plant System

Dimos and I begun brainstorming ideas for our solar powered project. In our research, we came across a few ‘self-watering plant’ systems such as this and this wanted to take these ideas a step further. We wanted our system to be completely solar powered, thus being an eco-friendly fixture on the domestic plant ecosystem.

 

Materials Needed

  • An enclosure (1)
  • PC Board (1)
  • 5VDC SPDT micro relay (1) **
  • Solar Panel (1)
  • Lithium-Ion Battery (1)
  • Toggle switch (1)
  • 10K resistor (1)
  • Size M coaxial DC power plug
  • Red and black 22AWG wire
  • 12AWG black wire
  • Electric water pump (1)
  • Water storage container w/ lid (1)
  • 8-32 x 2.5″ nuts and bolts (2)
  • 4-40 x 1″ nuts and bolts (8)
  • 4-40 x 3/8″ nut and bolt (1)
  • 1/4″ spacers (4)
  • Wire nut (1)
  • 3′ – 5′ plastic tubing (2)
  • #8 Terminal Ring (1)
  • House plant to water (1)

 

Progress

We are building our own water pump. We found a prescription pill capsule, a 3.6V DC motor and 3D printed spoked wheel. We have drilled, wired and tested the DC motor.

 

Next Steps

We will finish up the water pump, the Arduino code, the circuit and create the enclosure for the pump, Arduino, the battery and a holder for the solar panel.

 

Kinetic Energy Project

Jaycee and my kinetic project took various directions, which we have documented below.

 

The Protest Sign Phase

We originally wanted to create a protest sign that is powered by the up and down motion a protestors arm motion when marching with a sign. This would work similar to the magnetic powered flashlight  After doing some research, the energy that the sign would require would far surpass the energy generated by the arm motion. Simply put, it wouldn’t work as we would have wanted it to.

 

The Spinning Disks Phase

We then pivoted our idea from that to working wood disks, which we found in the junk shelf. We played with a few idea here, one being a ribbon that spun the wood disk roughly 270 degrees each way and was able to generate some power through it. The main issue here was having a consistant kinetic motion that was able to provide a smooth power band and power the light.
Tring to solve this ‘smooth power’ philosphy of ours, we dug through some more goodies and found some well-machined printer gears. The objective here was to see if we could mount and connect a couple of them together to reduce the amount of effort from the user to generate power.

​​​​​

We used the same wood disks and mounted it on the stepper motor. We had to use spacers to give the disk enough offset to poke through the hope just enough to force mount one of the printer gears on.

 After we mounted the gear, we had to develop a method to mount the other gear. The secondary gear wwoould either have to spin in place to the turn the gear mounted ln the stepper or it would after to rotate around the fixed gear, in a ‘churnning’ fashion. 

We decided on the latter. We found a wood handle on the junk shelf and drilled a hole big enough for the secondary gear to snap into it (with a little help from some hot glue).

We also tried to reduce friction as much we could, knowing that the secondary gear would be rubbing on the wood. a quick look into the kichen yeilded us some slippery wax paper, which we then cut and tapped on.

There were two issues with this round of kinetic motion. One, the actual motion by the user can rip the fixegear right off the stepper axis. Two, the power / effort ration was way too high.

 

The Magnet Phase

But wait, there’s more. Magnets. This idea cane at the 11th hour as we tried to harness the power of magentic power generation. Using a few videos we found online as a guide, we attached magnets, attraction side down) to the metal tin lid.

We then took the large maget that was inside the flashlight (repel side facing the disk) and rotated it around the tin lid. It spun!!

Enough though it soun, we can across several technical issues. 

1) The big maget was to strong for the little magnets. We solved this issue by stacking the magnets on top of each other, which multiplied the magnetic field.

2) We purposely chose to keep the human element part of this project. The optimal distance of the magnets was between 1.5-2 inches. The user would have to hold the magnet in such a way that they would be able to prevent the large magnet from instantly attaching to the magnets on the tin lid.

3) The ‘smooth power’ issue was still apparent in this phase. it would be effectively be smooth depending on who was usin the magent to spin the tjn, which would then spin the stepper.

Magnetic Powered LED from Jesal Trivedi on Vimeo.

 

Disks of Kinetic Energy

Jayce and I did some brainstorming and experimenting over the past week. We switched out concept from a light up protest sign to a art piece of sorts, that generates electricity as you spin a disk at the top. Our current concept  works in the following manner:

  • User spends disk which then spins a series of progressively larger disks
  • This spins a stepper motor, which then generates enough the electricity to power a series of LEDs

 

​​

​​

​​

​​